9.0 ENGINEERING COSTS

This chapter presents the costs estimated for compliance with the proposed effluent limitations
guidelines and standards for the Landfills industry. Section 9.1 provides a discussion of the cost
estimation methodol ogies considered by EPA including evaluation of two cost estimation models.
Section 9.2 presents adiscussion of the types of cost estimates developed, whilein Section 9.3, the
development of capital costs, operating and maintenance (O& M) costs and other related costs is
described in detail. Section 9.4 summarizes the compliance costs for each regulatory option
considered by EPA.

9.1 Evaluation of Cost Estimation Techniques

This section presents a discussion of the cost estimation techniques considered by EPA, including
evauation of two cost estimation models. The criteria used by EPA to evaluate these techniques as
well asthe results of abenchmark analysis to compare the accuracy of these techniques are presented.

The selected cost estimation techniques also are presented.

911 Cost Models

Development of compliance cost estimates for |eachate treatment systems is required to determine
the economic impact of the regulation. EPA has identified existing cost estimation models to
facilitate the development of compliance cost estimates. In a mathematical cost model, various design
and vendor dataon avariety of treatment technologies are combined and cost equations that describe
costs as afunction of system parameters, such as flow, are developed for each treatment technol ogy.
Using these types of models alows for the generation of compliance cost estimates for severa
regulatory options that are based on the iterative addition of treatment technologies which can assist
EPA in the selection of options as the basis for the proposed regulations.

Two well known cost models were evaluated for use in devel oping costs:



. Computer-Assisted Procedure for the Design and Evauation of Wastewater
Treatment Systems (CAPDET), developed by the U.S. Army Corps of Engineers.

. W/W Costs Program (WWC), Version 2.0, developed by CWC Engineering
Software.

CAPDET isintended to provide planning level cost estimates to analyze aternativesin the design of
wastewater treatment systems. Modules are used to devel op cost estimates for a variety of physica,
chemica, and biological treatment unit processes and can be linked together to represent entire
treatment trains. Equations in each of these modules are based upon common engineering principles
used for wastewater treatment system design. The CAPDET a gorithm generates a design based on
input parameters selected by the user, caculates cost estimates for various treatment trains and ranks

them based on present worth, capital, operating, or energy costs.

The WWC cost model was developed by Culp/Wesner/Culp from a variety of engineering sources,
including vendor supplied data, actual plant construction data, unit takeoffs from actua and
conceptual designs, and published data. The model calculates cost estimates for a variety of
individual treatment technology units that can be combined together to develop compliance cost
estimates for the complete treatment systems. The WWC model does not design each treatment
technology unit but rather prompts the user to provide design input parameters that form the basis
for the cost estimate. The WWC mode includes a separate Sporeadsheet program that provides design
criteriaguidelines to assist in developing the input parameters to the cost estimating program. The
spreadsheet includes treatment component design equations and is supplied with default parameters
that are based upon accepted design criteria used in wastewater treatment, to assist in the design of
particular treatment units. The spreadsheet dso isflexible enough to allow selected design parameters
to be modified to estimate industry-specific factors accurately. Once design inputs are entered into
the program, the WWC model calculates both construction and operation and maintenance (O&M)
costs for the selected wastewater treatment system.



9.1.2 Vendor Data

For certain wastewater treatment technology units, the cost model was not considered the most
accurate estimate of costs. For these instances, EPA determined that actual equipment and operation
and maintenance costs obtained directly from equipment vendors often can provide accurate cost
estimates.

Information on landfill wastewater characteristics was provided to vendors to determine the
appropriate treatment unit and accurate sizing. Quotes obtained from vendors included equipment
costs that were factored up to total capital costs by the Agency to account for site preparation,
mobilization costs, and engineering contingencies. Vendor quotes also were obtained for operation
and maintenance costs including utility usage and cost. Vendor quotes were used to determine cost
curvesfor equalization, multi-media filtration, and reverse osmosis. The cost curves used for these
treatment technologies are based on direct vendor quotes, commercia costing guides, or cost
information developed from vendor quotes as part of the Centralized Waste Treatment (CWT)
effluent guidelines effort.

9.1.3 Other EPA Effluent Guiddine Studies

Other EPA effluent studies, such as the Organic Chemicas and Plastics and Synthetic Fibers (OCPSF)
industry effluent guidelines, were reviewed to obtain additional costing background and supportive
information. However, costs developed as part of other industrial effluent guidelines are not used
in costing for this industry, with the exception of the CWT effluent guideline data referenced in
Section 9.1.2.

9.14 Benchmark Analysisand Evaluation Criteria

A benchmark analysis was performed to eva uate the accuracy of each cost estimation technique. This
benchmark analysis used actua costs provided in the 308 Questionnaires and compared them to costs
generated each cost estimation technique. Four landfill facilities (Questionnaire ID numbers (QIDs)
16122, 16125, 16041, and 16087) with wastewater trestment systems that were considered as abasis
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for BPT/BAT/NSPS/PSES/PSNS limitations were selected by EPA for benchmarking. Cost
estimates were devel oped for wastewater treatment units that make up the treatment systems at these
landfill facilities using the WWC and CAPDET models and vendor quotes. Next, EPA compared
these cost estimates to the actual component costs provided in the 308 Questionnaires to evaluate
the accuracy of each methodology in estimating capital and operation and maintenance costs. This
cost comparison is presented in Table 9-1. Treatment technol ogies that were used in this benchmark
anaysisinclude:

. equalization,

. chemical precipitation,
. activated sludge,

. sedimentation, and

. multi-media filtration.

EPA also benchmarked cost estimates developed using these techniques against actual costs for
wastewater treatment systems that included equalization, chemical precipitation, and multi-media
filtration, that were obtained from industrial waste combustor facilities as part of that effluent
guidelines effort. EPA believes that the wastewater characteristics being treated by these treatment
systems, i.e., inorganic contaminants and solids in an uncomplexed matrix, are similar for both
landfills and industrid waste combustor facilities and that this additional comparison provides a more
thorough eva uation of the Agency’s cost estimation methodologies. Table 9-2 presents a comparison
of the capital and O& M costs obtained for the wastewater treatment systems at four industrial waste
combustor facilitiesto the cost estimates obtained using each technique, i.e., the WWC and CAPDET

models, and vendor quotes.

As shown in Tables 9-1 and 9-2, EPA has determined that, based on the results of the benchmark
andysesfor both data sources, the WWC model generated cost estimates that are considered more
accurate than the CAPDET model when compared to actual treatment technology costs as provided
in 308 Questionnaire responses. In al instances, the WWC model estimated the more accurate
treatment system capital and O&M costs as compared to CAPDET and vendor costs. For several
facilities, such as QIDs 16087, 16122, and 16125, the WWC model generated capital costs to within
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approximately 32 percent of costs provided in the questionnaires. O& M costs for severa facilities,
including QIDs 16041, 16087, and 16122, were estimated to within approximately 18 percent of
costs provided in the 308 Questionnaires.

EPA used the following criteria to evaluate each cost estimation technique and to select the

appropriate option for devel oping a methodology for estimating compliance costs for the Landfills

industry:
. Does the model contain costing modules representative of the various
wastewater technologies in use or planned for use in the Landfills industry?
. Can the model produce costs in the expected flow range experienced in this
industry?
. Can the model be adapted to cost entire treatment trains used in the Landfills
industry?
. Is sufficient documentation available regarding the assumptions and sources
of data so that costs are credible and defensible?
. Is the model capable of providing detailed capital and operation and
mai ntenance costs with unit costing breakdowns?
. Is the model capable of atering the default design criteria in order to accurately
represent actual design criteriaindicative of the Landfills industry?
9.15 Selection of Final Cost Estimation Techniques

Based upon the results of the benchmark andys's, the WWC model was selected for estimating costs
for the mgority of the treatment technol ogies that form the basis for BPT/BAT/NSPS/PSES/PSNS
effluent limitations and standards. It was determined that the WWC model is capable of producing
accurate capital and O&M costs for a wide range of treatment technologies. The CAPDET model
was not considered capable of generating cost estimates for many of the technologies that form the
basis for BPT/BAT/NSPS/PSES/PSNS effluent limitations and standards for the Landfills industry
and was determined not to be as accurate in estimating technology costs for landfill facilities.
Therefore, EPA decided not to use the CAPDET model for estimating compliance costs.
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It was determined that the WWC model best satisfies the selection criteria. The program can estimate
costs for awide range of typical and innovative treatment technologies and can combine these costs
of each technology to develop system costs. Since the WWC model is a computer based program,
it readily allows for the iterative development of costs for a number of facilities and regulatory
options. The program utilizes cost modules that can accommodate the range of flows and design
input parameters needed to develop cost estimates for landfill facilities. Cost estimates generated by
this model are based upon a number of sources, including actual construction and operation costs,
as well as published data and are presented in a breakdown summary table that contains unit costs
and totals. Findly, the WWC model can be adapted to estimate costs based upon specified design

criteria and wastewater flow rates.

EPA notesthat there were particular technologies for which WWC model did not produce accurate
cost estimates; these technologies included equalization, multi-media filtration, and reverse osmosis.
In low flow situations, costs developed for these treatment technologies were excessively high as
compared to industry provided costs in 308 Questionnaire responses. For these technologies, EPA
determined that vendor quotes provided a more accurate estimate of compliance costs and would be

used in the final engineering costing methodology for these technologies.

9.2 Engineering Costing M ethodology

This section presents the costing methodology used to develop treatment costs for BPT, BCT, BAT,
and PSES options for the Landfills industry. This section also presents a description of additional
costs, such as monitoring costs, that were developed by EPA. The following discussion presents a
detailed summary of the technical approach used to estimate the compliance costs for each landfill
fecility. Total capital and annual operation and maintenance costs were developed for each facility
in EPA's database to upgrade their existing wastewater treatment system, or to install new treatment
technologies, to comply with the long term averages for each proposed option. Development of the
long term averages is discussed in Chapter 11 of this document and in the Statistical Support
documents. Facilities were costed primarily using the WWC model and on occasion, from cost

curves developed from vendor quotes. Table 9-3 presents a breakdown of the cost estimation method
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used for each treatment technology. Additiona costs were developed for monitoring, Resource
Conservation and Recovery Act (RCRA) permit modifications, and residua disposal. Tota facility
compliance costs under each proposed BPT, BCT, BAT, and PSES option then were devel oped by
adding treatment costs with these additional costs. Cost estimates for zero or aternative discharge

facilities were not developed for any of the regulatory options.

9.2.1 Treatment Costing M ethodology

The methodology used to develop facility-specific BPT, BCT, BAT, and PSES option compliance
costsis presented graphicaly on the flow diagram in Figure 9-1. Facilities were costed for an entire
new treatment system, whether or not they had existing treatment at the facility, if the collected flow

subject to this guideline was less than 85 percent of the total facility flow rate.

For each proposed regulatory option, each landfill facility in the Detailed Technical Questionnaire
database was evauated to determine if the facility would incur costs in order to comply with the
proposed regulations. EPA compared the current discharge concentrations of the facility’ s effluent
with the long term averages from each proposed regulatory option. If the facility’s current discharge
concentration was less than the long term average, it was considered to be in compliance. A facility
considered to be in compliance was projected to incur costs only for additional monitoring
requirements. If afacility was not in compliance but had treatment unit operations in-place capable
of complying with the proposed long term averages, the facility was costed for system upgrades that

would bring the facility into compliance.

For facilitiesthat did not have BPT, BCT, BAT, or PSES treatment systems or the equivalent, cost
estimates were developed for the additiona unit operations and/or system upgrades necessary to meet
each long term average. Facilitiesthat were dready close to compliance with the long term averages
only required an upgrade to achieve compliance with proposed limitations for a regulatory option.
Upgrade costs were developed using the WWC model whenever possible, and included either
additiona equipment to be installed as part of an existing wastewater treatment system, expansion

of existing equipment, or operationa changes. Examples of upgrade costs include such items as new
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or expanded chemical feed systems and improved or expanded aeration systems. If afacility had no
treatment system (or one that could not achieve desired level s with upgrades or minor additions) cost
estimatesfor an entire BPT, BCT, BAT, or PSES treatment system were developed for that facility.

The first step in using the WWC model was to use the design criteria guidelines spreadshest to
develop input parameters for the computer program. Actual pollutant loadings from the facility were
used whenever possible. If pollutant loadings were not available for a particular parameter, the
estimates of pollutant concentrationsin untreated landfill wastewater were used (see Chapter 6). The
facility's basdline flow rate and the regulatory option long term averages al'so were used in the design
of the unit operation. Certain parameters such as BOD,, TSS, and anmonia are used directly in the
WWC model and the design criteria guideline spreadsheet to design the various treatment unit
operations. Metadsincluded as pollutants of interest were selected to assist in the design of chemical
precipitation systsems. The metasto be treated typically control the type and amount of precipitating
agents, which govern the chemical feed system design. A more detailed discussion of the design

parameters and costs associated with individual treatment technologiesis presented in Section 9.3.

The design parameters from the design criteria spreadsheet then were input in the WWC model to
generate installed capital and O&M costs. O&M costs for treatment chemicals, labor, materials,
eectricity, and fuel are included in the WWC model O& M costs. Treatment costs developed using
the WWC model were corrected to 1992 dollars using the Engineering News Record published
indexes. After theingtalled capital and annual O& M costs were developed for each facility, selected
cost factors, as shown in Table 9-4, were applied to the results to develop total capital and O& M
costs.

To complete the estimation of compliance costs for each regulatory option, cost estimates for other
than treatment component costs were developed. The assessment must take into account other costs

associated with compliance with the proposed effluent limitations guidelines and standards including:

. land,
. residual disposal,



. RCRA permit modifications, and
. monitoring.

Each of these additional costs are further discussed and defined in the following sections.

Find capita cogts were devel oped for each facility, then amortized using a seven percent interest rate
over 15 years. Thisannualized capital cost then was added to the annual O&M cost to develop a

total annual cost for each regulatory option.

9211 Retrofit Costs

A retrofit cost factor was applied when additional equipment or processes were required for existing
systems. Retrofit costs cover the need for system modifications and components, such as piping,
valves, controls, etc., that are necessary to connect new treatment units and processes to an existing
treatment facility. Retrofit costs were estimated at 20 percent of the installed capital cost of the

equipment.

922 Land Costs

Land costs were not included in this andysis because EPA has determined that landfills have adequate
land to accommodate additional treatment systems. Typically, the size of the required treatment
system is small when compared to the land areas occupied by landfills. Landfills, as required by
regulation and permit, have buffer zones around the fill areas. New treatment systems, or upgrades
to an existing system, can be installed readily in this buffer zone or elsewhere at the landfill without

the need to acquire new land.

9.2.3 Residual Disposal Costs

For each of the proposed treatment system additions or upgrades, a cost for residual disposal also
was estimated. Two approaches were used: the first addressed facilities with current dudge handling
capabilities, and the second addressed facilities without current sludge handling capabilities. Residua
disposal costs were prepared on an annualized basis and added to the total O& M costs.
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For facilities with dudge handling capabilities, the present solids treatment/dewatering system was
evauated to determine if it was capable of handling the additional sludge expected to be produced
under aparticular regulatory option. For facilities with insufficient capacity to handle the additional
solids loadings, upgrade costs for dudge conditioning and dewatering were devel oped to account for
the additiona solids. For facilities with sufficient solids treatment capability, no additional sudge
treatment costs were provided. For facilities without installed sludge conditioning and dewatering

facilities, cost estimates for a dudge conditioning and dewatering system were devel oped.

Dewatered sludge is assumed to be disposed of on-site in the landfill. EPA's cost estimate also

includes the costs associated with the handling and transportation of the sludge to the on-site landfill.

924 Permit Modification Costs

A cost associated with the modification of an existing RCRA Part B permit was included for al
hazardous waste facilities requiring an upgrade or additional treatment processes. Legd,
adminigrative, public relations, and engineering fees are included in this cost. This cost was added
to the installed capital for the new or modified equipment and ranged from $50,000 to $250,000,
based upon $50,000 for each piece of new or modified equipment.

9.25 Monitoring Costs

Costs were developed for the monitoring of treatment system effluent. Costs were developed for

both direct and indirect dischargers and were based upon the following assumptions:

. Monitoring costs are based on the number of outfalls through which
leachate/groundwater is discharged. The costs associated with a single outfall is
multiplied by the total number of outfalls to arrive at the total cost for a facility.
Monitoring costs estimated by EPA are incremental to the costs already incurred by
the facility.

. The capital costs for flow monitoring equipment are included in EPA's estimates.
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. Sample collection costs (equipment and labor) and sample shipment costs are not
included in EPA's estimates because EPA assumes that the facility is already
conducting these activities as part of its current permit requirements.

Based upon a review of current monitoring practices at landfills, many conventional and
nonconventiona parameters, aswell as severd metds, are dready being monitored on aroutine basis.
EPA developed monitoring costs based upon BOD, and TSS monitoring 20 times per month and
weekly monitoring of ammonia and other toxic and nonconventiona pollutants. In general, these
frequencies are higher than currently required. Table 9-5 presents the monitoring cost per sample for

the landfill facilities.

9.2.6 Off-Site Disposal Costs

EPA evauated whether it would be more cost effective for small flow facilities to have their landfill
wastewater hauled off Ste and treated at a centralized waste treatment facility, as opposed to on-site
treatment. Total annual costs for new or upgraded wastewater treatment facilities were compared
to the costs for off-site treatment at a centralized waste treatment facility. Off-site disposal costs
were estimated at $0.25 per gallon of wastewater treated. Transportation costs were added to the
off-gite treatment costs at a rate of $3.00 per loaded mile using an average distance of 250 milesto
the treatment facility. Transportation costs were based upon the use of a 5,000-gallon tanker truck
load. Facilitiesthat treat their wastewaters off site are considered zero or alternative dischargers and
hence do not incur ancillary costs such as residual disposal, monitoring and permit modifications.
EPA then used the lower of the two costs either on-site or off-site treatment. Table 9-6 presents the

facilities that were costed using off-site treatment.

9.3 Development of Cost Estimatesfor Individual Treatment Technologies

In Chapter 8, EPA identified and described the wastewater control and treatment technol ogies used
in the Landfills industry and how they were assembled into proposed regulatory options. The
following sections describe how EPA developed cost estimates for each of the treatment technologies
used in the proposed regulatory options. Specific assumptions regarding the equipment used, flow
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ranges, input and design parameters, design and cost calculations are discussed for each treatment
technology. Table 9-3, previously referenced, presented the method used to estimate costs for each
of treatment technologies used in the proposed BPT, BCT, BAT, and PSES options. Table 9-7
presents a summary of the cost estimation techniques used to estimate costs for each treatment
technology for the BPT, BCT, BAT, and PSES regulatory options, including the WWC treatment

module numbers.

To facilitate the costing of many facilities, capital and O& M cost curves were developed for specific
technologies and system components. These curves, which represent cost as a function of flow rate
or other system design parameters, were developed using a commercial statistical software package
(Slidewrite Plus Version 2.1). First, costs were developed using the WWC model for each
technology or component using as a design basis, five different flow rates or other system design
parameters (depending upon the governing design parameter). For instance, a technology costed on
the basis of flow would have costs estimated using the WWC model at 0.01 million gallons per day
(MGD), 0.05 MGD, 0.1 MGD, 0.5 MGD, and 1.0 MGD. Ranges for the five selected points were
based upon a review of the flow or technology design parameters for landfill facilities and were
selected to bracket the range from low to high. Next, these five data points (flow/design parameter
and associated cost) were entered into a commercia statistical software program . Cost curves to
model the total capital and O&M costs then were developed by the program using curve fitting
routines. A second order naturd log equation format was used to develop all curves. All cost curves
yielded total capital and O&M costs, unless otherwise noted.

9.3.1 Equalization

EPA conducted areview of questionnaire responses to determine the typical hydraulic detention time
for equalization. Based upon of review of industry furnished data, a detention time of 48 hours was
selected.

Equalization costs developed for each regulatory option are based on published price quotes for
storage tanks. These costs were taken from the 1996 Environmental Restoration Unit Cost Book
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published by R.S. Means, Inc. A cost curve as afunction of flow was developed from these tank
quotes. Construction costs were based upon published data for an above ground circular stedl tank.
Additional costs associated with a wastewater pumping system and diffused aeration to provide
sufficient mixing of tank contents to prohibit settling also were included. The capital cost curve

developed for equalization is presented as Equation 9-1 and is graphically presented in Figure 9-2.

Capital Costs
In(Y) = 15.177382 + 1.981547In(X) + 0.15768In(X)? (9-1)

where:
X =Flow Rate (MGD), and
Y = Capital Cost (1992 $)

The O&M cost for the equation was taken as a function of the capital cost and is based upon 10
percent of the total capital cost per year.

9.3.2 Flocculation

A cost curve was developed for flocculation using the WWC model. WWC unit process 72 was
used. Costsfor flocculation were afunction of flow at a hydraulic detention time of 20 minutes. The

capital and O&M cost curves developed for flocculation are presented as Equations 9-2 and 9-3:

Capital Costs

In(Y) = 11.744579 + 0.633178In(X) - 0.015585In(X)? (9-2
O& M Costs

In(Y) = 8.817304 + 0.533382In(X) + 0.002427In(X)? (9-3)

where:
X = Flow Rate (MGD), and
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Y = Cost (1992 $)

Figures 9-3 and 9-4 graphically present the flocculation capital and O& M cost curves, respectively.

Cost estimates for flocculation basins are based on rectangular-shaped, reinforced concrete structures
with adepth of 12 feet and length-to-width ratio of 4:1. Common wall construction was used where
the total basin volume exceeded 12,500 cubic feet. Vertical turbine flocculators have higher
structurd costs than horizontal paddie floccul ators because they require structural support above the
basin. Horizontal paddies are less expensive and more efficient for use in larger basins, particularly
when tapered flocculation is practiced. Manufactured equipment costs are based on a G value 80 (G
is the mean tempora velocity gradient that describes the degree of mixing; i.e., the greater the value
of G the greater the degree of mixing). Cost estimates for drive units are based on variable speed
drives for maximum flexibility, and dthough common drives for two or more parallel basins are often

utilized, the costs are based on individual drives for each basin.

Energy requirements are based on a G value 80 and an overall motor/mechanism efficiency of 60
percent. Labor requirements are based on routine operation and maintenance of 15 minutes/day/basin

(maximum basin volume 12,500 cubic ft.) and a4 hour oil change every 6 months.

9.33 Chemical Feed Systems

The following section presents the methodology used to calculate the chemical addition feed rates
used with each applicable regulatory option. Table 9-8 is a breakdown of the design process used
for each type of chemica feed. Chemical costs were taken from the September 1992 Chemical
Marketing Reporter and are presented in Table 9-9.

For facilities with existing chemica precipitation systems, an evaluation was made to determine if the
system was achieving the regulatory option long term averages. If the existing system was achieving
long term averages, no additional chemical costs were necessary. However, if the facility was not

achieving the long term averages for an option, costs were estimated for an upgrade to the chemical
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precipitation system. First, the stoichiometric requirements were determined to remove each metal
pollutant of interest to the long term average level. If the current feed rates were within the
calculated feed rates, no additional costs were calculated. For facilities currently feeding less than
the calculated amounts, costs were estimated for an upgrade to add additional precipitation chemicals,
such as a coagulant, or expand their existing chemical feed system to accommodate larger dosage

rates.

Facilities without an installed chemical precipitation system were costed for an entire metals
precipitation system. The chemical feed rates used at a particular facility for either an upgrade or a
new system were based upon stoichiometric requirements, pH adjustments, and the buffering ability

of the raw influent.

Inthe CWT industry guideline, it was determined that the stoichiometric requirements for chemical
addition far outweighed the pH and buffer requirements. EPA determined that 150 percent of the
stoichiometric requirement would sufficiently account for pH adjustment and buffering of the
solution. An additional 50 percent of the stoichiometric requirement was included to react with

metals not on the pollutant of interest list. Finally, an additional 10 percent was added as excess.

Sodium Hydroxide Feed Systems

The stoichiometric requirement for either lime or hydroxide to remove a particular metal is based

upon the generic equation:

Ib o, valence,, MW

M treatment chemical
I b _ remove | )

treatment chemical year MWM val ence, . ca

where, M is the target metal and MW is the molecular weight.

The calculated amounts of sodium hydroxide to remove a pound of each of the selected metal

pollutants of concern are presented in Table 9-10.
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Sodium hydroxide chemical feed system costs were developed for many facilities using the WWC
model. Actua facility loadings were used to establish the sodium hydroxide dosage requirement.
WWC unit process 45 was used to develop capital and O&M costs for sodium hydroxide feed
sysems. The capital and O&M cost curves developed for sodium hydroxide feed systems based upon
the calculated dosage are presented as Equations 9-4 and 9-5, respectively.

Capital Costs

In(Y) = 10.653 - 0.184In(X) + 0.040In(X)? (9-9)

O& M Costs

In(Y) = 8.508 - 0.0464In(X) + 0.014In(X)? (9-5)
where:

X = Dosage Rate (Ib/day), and
Y = Cost (1992 $)

Figures 9-5 and 9-6 graphically present the sodium hydroxide feed system capital and O&M cost

curves, respectively.

Cost estimates for a sodium hydroxide feed system estimated using WWC unit process 45 are based
on asodium hydroxide feed rate of between 10 to 10,000 Ib/day, with dry sodium hydroxide used at
rates less than 200 Ib/day, and liquid sodium hydroxide used at higher feed rates.

The WWC model assumes that dry sodium hydroxide (98.9 percent pure) is delivered in drums and
mixed to a 10 percent solution on Site. A volumetric feeder is used to feed sodium hydroxide to one
of two tanks; one for mixing the 10 percent solution, and one for feeding. Two tanks are necessary
for this process because of the slow rate of sodium hydroxide addition due to the high heat of
solution. Each tank is equipped with a mixer and a dual-head metering pump, used to convey the 10
percent solution to the point of application. Pipe and valving is required to convey water to the dry
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sodium hydroxide solution mixing tanks and between the metering pumps and the point of

application.

A 50 percent sodium hydroxide solution is purchased premixed and delivered by bulk transport for
feed rates greater than 200 Ib/day. The 50 percent solution contains 6.38 pounds of sodium
hydroxide per galon, that is stored for 15 days in fiberglass reinforced polyester (FRP) tanks. Dual-
head metering pumps are used to convey the liquid solution to the point of application, and a standby
metering pump is provided in all systems. The storage tanks are located indoors, since 50 percent

sodium hydroxide beginsto crystallize at temperatures less than 54°F.

Phosphoric Acid Feed Systems

In the Subtitle C Hazardous subcategory, phosphoric acid is necessary to neutralize the waste stream
and to provide phosphorus to biological treatment systems.

The phosphoric acid feed system was costed using the WWC unit process 46. The amount of
phosphoric acid necessary to provide nutrient phosphorus was determined to be the controlling factor
over the amount required for pH adjustment. A ratio of BOD, removed to the amount of phosphorus
present in the influent waste stream (100 pounds BOD, removed to one pound phosphorus) was used
to determine the amount of phosphoric acid to be added as a nutrient feed to biological treatment
sysem. To dlow for solution buffering, 10 percent excess phosphoric acid was added. The capital
and O&M cogt curves developed for phosphoric acid feed systems based upon the calculated dosage
are presented as Equations 9-6 and 9-7, respectively.

Capital Costs

In(Y) = 10.042 - 0.155In(X) + 0.049In(X)? (9-6)
O& M Costs

In(Y) = 7.772 - 0.086In(X) + 0.041In(X)? (9-7)
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where:
X = Dosage Rate (gpd), and
Y = Cost (1992 $)

Figures 9-7 and 9-8 graphically present the phosphoric acid feed system capital and O&M cost

curves, respectively.

Costs are based on systems capable of metering 93 percent concentrated acid from a storage tank
directly to the point of application. For feed rates up to 200 gpd, the concentrated acid is delivered
in drums and stored indoors. At higher flow rates, the acid is delivered in bulk and stored outdoors
in FRP tanks. Phosphoric acid is stored for 15 days, and a standby metering pump isincluded for all
installations.

Polymer Feed Systems

WWC unit process 34 was used to cost for polymer feed systems based upon a dosage rate of 2 mg/I.
Although this modul e estimates costs for aliquid alum feed system, costs generated by this module
were determined to be more reasonable and accurate in developing polymer system costs than the
WWC unit process 43 for polymer feed systems. The capitad and O&M unloaded cost curves
developed for polymer feed systems are presented as Equations 9-8 and 9-9, respectively.

Capital Costs

In(Y) = 10.539595 - 0.13771In(X) + 0.052403In(X)? (9-8)

O&M Costs

In(Y) = 9.900596 + 0.99703In(X) + 0.00019In(X)? (9-9)
where:

X = Dosage Rate (Ib/hr), and
Y = Cost (1992 $)
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Figures 9-9 and 9-10 graphically present the polymer feed system capital and O&M cost curves,
respectively.

Polymer is stored for 15 days in fiberglass reinforced polyester tanks. For smaller installations, the
tanks are located indoors and left uncovered and for larger installations, the tanks are covered and
vented, with insulation and heating provided. Dual-head metering pumps deliver the polymer from
the storage tank and meters the flow to the point of application. Feed costsinclude 150 feet of 316
ganless sted pipe, dong with fittings and vaves for each metering pump. A standby metering pump

isincluded for each installation.

9.34 Primary Clarification

Cost curves were developed for primary clarification using the WWC model. WWC unit process 118
for arectangular basin with a 12 foot side wall depth was used. Costs for primary clarification were
based upon a function of flow at an overflow rate of 900 gallons per day per square feet tank size.
The capitd and O&M cost curves developed for primary clarification are presented as Equations 9-10
and 9-11, respectively.

Capital Costs

In(Y) = 12.517967 + 0.575652In(X) + 0.009396In(X)? (9-10)
O&M Costs

In(Y) = 10.011664 + 0.268272In(X) + 0.00241In(X)? (9-11)

where:
X =Flow Rate (MGD), and
Y = Cost (1992 $)

Figures 9-11 and 9-12 graphically present the primary clarification capital and O&M cost curves,
respectively.

9-19



Estimated costs are based on rectangular basins with a 12 feet side water depth (SWD) and chain and
flight dudge collectors. Costs for the structure assumed multiple units with common wall
construction and include the chain and flight collector, collector drive mechanism, weirs, the
reinforced concrete structure complete with inlet and outlet troughs, a udge sump, and sludge

withdrawal piping. Yard piping to and from the clarifier is not included in the cost estimates.

9.35 Activated Sludge Biological Treatment

Costs for biological treatment systems using the activated dudge process were estimated using the
WWC unit process 18 for a rectangular aeration basin with an 10 foot SWD. Basin size was
determined using a 24 hour hydraulic detention time. Basin volume was calculated using Equation
9-12.

X = ((24 Hours x 3600) x (Z))/1,000 (9-12)

where:
X = Basin Volume (1,000 cu ft)
Z = Flow Rate (cfs)

The WWC model assumes zero O&M costs for the aeration basins only. The unloaded (without
engineering cost factors applied) capital cost curve developed for aeration basins with an 10 foot
SWD is presented as Equation 9-13.

In(Y) = -1.033901 + 3.722693In(X) - 0.197016INn(X)? (9-13)
where:
X = Basin Volume (in thousands of cubic feet), and

Y = Capital Cost (1992 $)

Figure 9-13 graphically presents the aeration basin capital cost curve.
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Aeration using diffused air was costed for the basin using WWC unit process 26 and actual facility
loading conditions. Aeration requirements were calculated using the facility BOD and ammonia

loadings and was determined using Equation 9-14.

X = ((A + B)/0.075 x C x 0.232 x 1440)/1,000 (9-14)

where:
X = Air Requirement (1,000 standard cubic feet per minute [scfm])
A =BODq to Aeration Basin (Ib/day) based on 1.8 Ib O, /Ib BOD; influent
B = Ammoniato Aeration Basin (Ib/day) based on 4.6 Ib O,/Ib ammonia influent
C = Transfer Efficiency at 9 percent

The unloaded capital and O&M cost curves developed for air diffusion systems are presented as
Equations 9-15 and 9-16, respectively.

Capital Costs

In(Y) = 11.034417 + 0.992985In(X) - 0.002521In(X)? (9-15)
O&M Costs

In(Y) = 9.497546 + 0.549715In(X) - 0.004216In(X)? (9-16)

where:
X = Air Requirement (1,000 scfm), and
Y = Cost (1992 $)

Figures 9-14 and 9-15 graphically present the air diffusion system capital and O&M cost curves,
respectively.
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The cogts for aeration basinsinclude all equipment, piping, eectrical, and labor for instalation. The
air supply system costs include piping from air source to aeration basin, blowers, controls, and
housing. Aeration basin cost estimates include excavation, concrete walkways, in-basin process
piping, and handrails and attendant costs, but excludes the cost of aeration equipment, electrical and
instrumentation work. EPA considered providing for heated aeration basins for facilities located in
cold weather climates. Based upon data collected by EPA, biological treatment of landfill generated

wastewater was not adversely affected by climate conditions.

9.3.6 Secondary Clarification

Cogt curves were developed for secondary clarification using the WWC model. WWC unit process
118 for arectangular basin with a 12 foot side wall depth, and chain and flight collectors was used.
Costs for secondary clarification were based upon a function of flow, at an overflow rate of 900
gallons per day per square feet tank size. The capitd and O& M cost curves developed for secondary
clarification are presented as Equations 9-17 and 9-18, respectively.

Capital Costs

In(Y) = 12.834601 + 0.688675In(X) + 0.035432In(X)? (9-17)
O& M Costs

In(Y) = 10.197762 + 0.339952In(X) + 0.015822In(X)? (9-18)

where:
X =Flow Rate (MGD), and
Y = Cost (1992 $)

Figures 9-16 and 9-17 graphically present the secondary clarification capital and O&M cost curves,
respectively.
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Codgs for the structure assumed multiple units with common wall construction, and include the chain
and flight collector, collector drive mechanism, weirs, the reinforced concrete structure complete with
inlet and outlet troughs, a sludge sump, and sludge withdrawal piping. Yard piping to and from the

clarifier is not included in the cost estimates.

9.3.7 Multimedia Filtration

Cogt curves as afunction of flow rate were developed for amulti-mediafiltration system using vendor
supplied quotes. The cost curves were developed as part of the CWT effluent guidelines effort.  The
capital and O&M cost curves developed for multi-media filtration are presented as Equations 9-19
and 9-20, respectively.

Capital Costs

In(Y) = 12.265 + 0.658In(X) + 0.036In(X)? (9-19
O& M Costs

In(Y) = 10.851 + 0.168In(X) + 0.018In(X)? (9-20)

where:
X = Flow Rate (MGD), and
Y = Cost (1992 $)

Figures 9-18 and 9-19 graphically present the multi-media filtration capital and O& M cost curves,
respectively.

The tota capital costs for the multi-media filtration systems represent equipment and installation
costs. The total construction cost includes the costs of the filter, instrumentation and controls,
pumps, piping, and installation. The operation and maintenance costs include energy usage,

maintenance, labor, and taxes and insurance. Energy costs include electricity to run the pumps,
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lighting, and instrumentation and controls. The labor requirement for the multi-media filtration

system was four hours per day.

9.3.8 Reverse Osmosis

Capita and O&M cost curves as a function of flow rate were developed for reverse osmosis
treatment using vendor supplied quotes. Costs were based on one single-pass system using disk tube
module technology. The capital cost curve developed for reverse osmosis is presented as Equation
9-21.

In(Y) = 14.904 - 0.0142In(X) - 0.0687IN(X)? (9-21)

where:
X =Flow Rate (MGD), and
Y = Capital Cost (1992 $)

Figure 9-20 graphically presents the reverse osmosis capital cost curves. Based upon vendor supplied
costs, O&M costs were taken at $0.02/gallon.

Costs for a standard reverse osmosis system generally include the following components:. filter
booster pump, sand or carbon filter, cartridge filter, high-pressure pump and control system, reverse
osmosis module permeators, pure water deacidification filter, inbuilt closed circuit cleaning system,
automatic pure water membrane flushing system, power and control system with microprocessor, full
instrumentation and measurement equipment, comprehensive fail-safe system, fault indication, and
modular skid frame construction. The costs did not take into account the following optional
equipment: main raw-water supply pump, pure water tank and distribution pump, chlorine dosing
gystem, ultra-violet disinfection system, containerized/mobile systems, self contained power supply,

and anti-magnetic systems.
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9.3.9 Sludge Dewatering

Costs estimated for dudge dewatering were based upon dudge drying beds. Each facility was costed
separately using the WWC unit process 128. Required bed area was based upon influent
characterigtics a aloading of 15 gallons per day of dudge per square foot bed area. Drying bed area
was calculated using Equation 9-22.

X = (A x 365)/B (9-22)

where:
X = Area (s ft)
A =Tota Dry Solids (Ib/day) based on 0.8 Ib solids/Ib BODy influent
B = 15 |b per year dudge/sq ft

The unloaded capita and O&M cost curves developed for dudge drying beds are presented as
Equations 9-23 and 9-24, respectively.

Capital Costs

In(Y) = 4.488639 + 0.716471In(X) + 0.000005311In(X)? (9-23)

O&M Costs

In(Y) = 6.95049 + 0.33155In(X) + 0.002882In(X)? (9-24)
where;

X = Area(sq ft), and
Y = Cost (1992 $)

Figures 9-21 and 9-22 graphically present the sudge drying bed capital and O&M cost curves,
respectively.
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Included in the costs are dudge distribution piping, nine inches of sand media overlying nine inches
of gravel media, two foot concrete dividers between beds, and an underdrain system to remove

percolating water. Land costs are excluded from the cost estimates.

Energy requirements are based on: a front-end loader to remove dried sludge from the beds and
prepare the bed for the next dudge application; cleaning and preparation time of 3 hours for a 4,000
square foot bed; diesdl fuel consumption of 4 gallons per hour; and 20 cleanings/bed/year.

9.4 Costsfor Regulatory Options

The following sections present the costs estimated for compliance with BPT, BCT, BAT, PSES,
NSPS, and PSNS effluent limitations guiddlines and standards for the Subtitle D Non-Hazardous and
Subtitle C Hazardous subcategories. Costs for each of the regulatory options are presented below
for only the facilities in the 308 Questionnaire database, as well as, for al of the facilities in the
Landfills industry based on national estimates (see Chapter 3, Section 3.2.1 for an explanation of
national estimates). All costs estimates in this section are expressed in terms of 1992 dollars, unless

otherwise noted.

94.1 BPT Regulatory Costs

Preliminary cost effectiveness andyses were devel oped by EPA using interim costing rounds to select
proposed BPT regulatory options. The BPT costs for each subcategory are presented below.

9411 Subtitle D Non-Hazar dous Subcategory BPT Costs

Once current discharge and untreated landfill wastewater pollutant concentrations were developed
for facilitiesin the Subtitle D Non-Hazardous subcategory, EPA evaluated two options, BPT Option
| and II.

BPT Option |: Equalization and activated sludge biological treatment with sludge dewatering. For
the facilitiesin the 308 Questionnaire database, Table 9-11 presents the total capital ($3,201,715) and
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annual O&M costs ($927,555) for this option, as well as, the total amortized annual cost for each
facility. Based on nationa estimates, BPT Option | for the Subtitle D Non-Hazardous subcategory
is estimated to have totd annudized pre-tax and post-tax costs of $5.97 and $5.43 million (based on
1992 dollars), respectively.

BPT Option II: Equalization, activated dudge biological treatment, and multi-media filtration with
dudge dewatering. For the facilitiesin the 308 Questionnaire database, Table 9-12 presents the total
capital ($3,801,954) and annual O&M ($1,197,169) costs for this option, as well as, the total
amortized annua cost for each facility. Based on national estimates, BPT Option Il for the Subtitle
D Non-Hazardous subcategory is estimated to have total annualized pre-tax and post-tax costs of
$7.73 and $6.85 million (based on 1992 dollars), respectively.

94.1.2 Subtitle C Hazardous Subcategory BPT Costs

Once current discharge and untreated landfill wastewater pollutant concentrations were devel oped
for facilitiesin the Subtitle C Hazardous subcategory, EPA evaluated one BPT option; BPT Option
l.

BPT Option |: Equalization, chemical precipitation, and activated Sludge biological treatment with
dudge dewatering. Since EPA has estimated that there are no direct discharge facilities in the Subtitle

C Hazardous subcategory database, there are no costs associated with this option.

9.4.2 BCT Regulatory Costs

Preliminary cost effectiveness andyses were devel oped by EPA using interim costing rounds to select
proposed BCT regulatory options. The BCT costs for each subcategory are presented below.
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9421 Subtitle D Non-Hazar dous Subcategory BCT Costs

Once current discharge and untreated landfill wastewater pollutant concentrations were developed
for facilitiesin the Subtitle D Non-Hazardous subcategory, EPA evauated two options; BCT Option
| and II.

BCT Option I: Equdization and activated sludge biological treatment with sludge dewatering. This
option is equivalent to BPT Option | for the Non-Hazardous subcategory with costs previously
provided in Section 9.4.1.1 above.

BCT Option I1: Equalization, activated sludge biological treatment, and multi-media filtration with
dudge dewatering. This option is equivalent to BPT Option Il for the Non-Hazardous subcategory
with costs previously provided in Section 9.4.1.1 above.

94272 Subtitle C Hazardous Subcategory BCT Costs

Once current discharge and untreated landfill wastewater pollutant concentrations were devel oped

for facilities in the Subtitle C Hazardous subcategory, EPA evaluated one option; BCT Option I.

BCT Option I: Equalization, chemical precipitation, and activated sludge biological treatment with
sludge dewatering. This option is equivalent to BPT Option | for the Subtitle C Hazardous

subcategory, and therefore, has no associated costs.

9.4.3 BAT Regulatory Costs

Preliminary cost effectiveness andyses were devel oped by EPA using interim costing rounds to select
proposed BAT regulatory options. The BAT costs for each subcategory are presented below.

9431 Subtitle D Non-Hazar dous Subcategory BAT Costs

EPA costed three BAT options for the Subtitle D Non-Hazardous subcategory; BAT Options|, Il
and 1.
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BAT Option I: Equalization and activated sludge biological treatment with sludge dewatering. This
option is equivalent to BPT Option | for the Non-Hazardous subcategory with costs previously
provided in Section 9.4.1.1 above.

BAT Option I1: Equalization, activated sludge biologica treatment, and multi-media filtration with
dudge dewatering. This option is equivalent to BPT Option Il for the Non-Hazardous subcategory
with costs previously provided in Section 9.4.1.1 above.

BAT Option I1l: Equalization, activated sludge biological treatment, multi-media filtration, and
reverse osmoss with dudge dewatering. For facilities in the 308 Questionnaire database, Table 9-13
presents the totd capita ($38,952,560) and annual O& M ($6,481,452) costs for this option, as well
as, thetotal amortized annua cost for each facility. Based on national estimates, BAT Option 111 for
the Subtitle D Non-Hazardous subcategory is estimated to have a total annualized post-tax cost of
$29.16 million (based on 1992 dollars). For comparison with other regulations for other industries,
the total annualized pre-tax cost for this option is estimated at $21.97 million (based on 1981 dollars).

94.3.2 Subtitle C Hazardous Subcategory BAT Costs

Once current discharge and untreated landfill wastewater pollutant concentrations were devel oped
for facilitiesin the Subtitle C Hazardous subcategory, EPA evaluated one BAT option; BPT Option
l.

BAT Option I: Equalization, chemical precipitation, and activated sludge biological treatment with
dudge dewatering. This option is equivalent to BPT Option | for the Hazardous subcategory, and

therefore has no associated costs.

9.4.4 PSES Regulatory Costs

Preliminary cost effectiveness andyses were devel oped by EPA using interim costing rounds to select
proposed PSES regulatory options. The PSES costs for each subcategory are presented below.
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9441 Subtitle D Non-Hazar dous Subcategory PSES Costs

EPA estimates compliance costs for facilities in the Subtitle D Non-Hazardous subcategory for one
PSES option; PSES Option 1.

PSES Option I: Equdization and activated sludge biological treatment with sludge dewatering. For
fadlitiesin the 308 Questionnaire database, Table 9-14 presents the total capital ($11,764,213) and
annual O&M ($1,957,211) costs for this option, as well as, the total amortized annual cost for each
facility. Based on national estimates, the cost for this PSES option is estimated at $28.2 million
(based on 1992 dollars).

9442 Subtitle C Hazardous Subcategory PSES Costs

For the Subtitle C Hazardous subcategory, EPA evaluated one PSES option; PSES Option I.

PSES Option I: Equalization, chemical precipitation, and activated sludge biological treatment with
dudge dewatering. All of the landfills in the Hazardous subcategory which indirectly discharge their
wastewaters in EPA’s survey of the industry are expected to be in compliance with the baseline
treatment standards established for indirect dischargers. Therefore, EPA has projected that there will
be no costs associated with compliance for the proposed PSES regulation for this subcategory.

9.4.5 NSPS Regulatory Costs

Preliminary cost effectiveness andyses were devel oped by EPA using interim costing rounds to select
proposed NSPS regulatory options. The NSPS costs for each subcategory are presented below.

9451 Subtitle D Non-Hazar dous Subcategory NSPS Costs

EPA is proposing NSPS for the Subtitle D Non-Hazardous subcategory to be equivalent to the
limitations proposed for BPT Option I for this subcategory, which also isthe basisfor BCT, BAT,
and PSES Option I1.
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NSPS: Equalization, activated sludge biological treatment and multi-media filtration with sludge
dewatering. The total NSPS annual cost for the Non-Hazardous subcategory is $49,600 assuming
an average facility flow of 10,000 gpd.

945.2 Subtitle C Hazardous Subcategory NSPS Costs

EPA isproposing NSPS for the Subtitle C Hazardous subcategory to be equivalent to the limitations
proposed for BPT Option | for this subcategory, which also isthe basisfor BCT, BAT, and PSES
Option 1.

NSPS: Equalization, chemical precipitation, and activated sludge biological treatment with sludge
dewatering. The total NSPS annual cost for the Hazardous subcategory is $152,700 assuming an
average facility flow of 10,000 gpd.

9.4.6 PSNS Regulatory Costs

Preliminary cost effectiveness andyses were devel oped by EPA using interim costing rounds to select
proposed PSNS regulatory options. The PSNS costs for each subcategory are provided below.

946.1 Subtitle D Non-Hazar dous Subcategory PSNS Costs

Since EPA is not proposing PSNS standards for Subtitle D Non-Hazardous subcategory, there are

no costs associated with this requirement.

9.46.2 Subtitle C Hazardous Subcategory PSNS Costs

EPA isproposing PSNS for the Subtitle C Hazardous subcategory to be equivalent to the limitations
proposed for BPT Option | for this subcategory, which also isthe basisfor BCT, BAT, and PSES
Option 1.
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PSNS: Equalization, chemical precipitation, and activated sludge biological treatment with sludge
dewatering. The total PSNS annual cost for the Hazardous subcategory is $141,400 assuming an
average facility flow of 5,600 gpd.
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Table 9-2. Costing Source Comparison

Capital Costs
1992 Dollars
Questionnaire
wwcC
5 == CAPDET
Vendor Quotes
4

Capital Cost (%)
Millions

Chem Precip  Chem Precip and Filtration Chem Precip 2-stage Chem Precip
Questionnaire 2,206,980 2,751,204 1,214,563 2,265,009
WwWC 3,543,264 2,950,035 2,144,446 1,476,821
CAPDET 4,948,779 1,475,480 942,216 3,072,253
Vendor Quotes 399,878 3,314,930 319,206 670,158
O&M Costs
1992 Dollars
Questionnaire
WWC |
2000 CAPDET

Vendor Quotes

1500

1000

Capital Cost (%)
Thousands

500

Chem Precip  Chem Precip and Filtration Chem Precip 2-stage Chem Precip
Questionnaire 910,000 315,000 1,837,000 363,000
WWC 1,355,505 231,728 1,864,219 686,360
CAPDET 585,855 99,036 515,859 466,848
Vendor Quotes 860,867 222,135 361,623 151,889



Table 9-3: Breakdown of Costing Method by Treatment Technology

Treatment Cost Using Cost Using Vendor Key Design

Technology WWC Program Quotes Parameter(s)

Equalization X(a) Flow rate

Flocculation X Flow rate

Chemical Feed Flow rate & Pollutant

System of Interest Metals

Primary & Secondary X Flow rate

Clarification

Activated Sludge X Flow rate, BOD., &
Ammonia

Reverse Osmosis X Flow rate

Multimedia Filtration X(b) Flow rate

Sludge Drying Beds X Flow rate, TSS &
BOD,

@ Based upon costs provided in Environmental Restoration Unit Cost Book

(b) Cost curves developed using vendor quotes in the CWT guideline effort
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Table 9-4: Additional Cost Factors

Type Factor Percent of Capital Cost

Capital Site Work & Interface Piping 18
General Contractor Overhead 10
Engineering 12
Instrumentation & Controls 13
Buildings 6
Site Improvements 10
Legd, Fiscal, & Administrative 2
Interest During Construction 9
Contingency 8
Retrofit (if necessary) 20

Oo&M Taxes & Insurance 2!

(1) 2 percent of total capital costs, which includes WWC costs and capital costs listed above.
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Table 9-5: Analytical Monitoring Costs

Pollutants

Cost/Sample ($)*

Subtitle D Non-Hazardous

AmmoniaasN 18.00
BOD, 15.00
TSS 6.00
Metals & Organics 105.00
Subtitle C Hazardous

AmmoniaasN 18.00
BOD, 15.00
TSS 6.00
Metals & Volatile/Semi-Volatile

Organics 1600.00

Notes:

(1) Cost based on 1995 analytical laboratory costs adjusted to 1992 dollars.
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Table 9-6: Subtitle D Non-Hazardous Facilities Costed for Off-Site Disposal

Facility QID Flow (gpd) Off-Site Disposal Cost
($lyn)

16048 5 730

16055 8 1168

16062 50 7300

16139 50 7300

16148 77 11242

16160 137 20002

16250 200 29200
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Table 9-8: Chemical Addition Design Method

Basisfor Design
Chemical Stoichiometry Reference’ (mg/L)
Sodium Hydroxide X
Polymer 20
Phosphoric Acid X

(1) From: Industrial Water Pollution Control, 2nd Edition.
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Table 9-9: Treatment Chemica Costs

Treatment Chemical Cost
Sodium Hydroxide $350/ton
Polymer $2.25/1b
Phosphoric Acid $300/ton
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Table 9-10: Sodium Hydroxide Requirements for Chemical Precipitation

Dosage Rate
Pollutant Sodium Hydroxide
(Ib/Ib metal removed)
Cadmium 0.71
Chromium, total 231
Iron 215
Nickel 2.04
Zinc 1.22
Phosphorus 6.46
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10.0 NON-WATER QUALITY IMPACTS

The operation of wastewater treatment systems has the potential for causing an environmenta impact
through the generation of solid and hazardous residuals, air emissions, and the energy consumption

of the wastewater treatment equipment.

The dimination or reduction of one form of pollution may create or aggravate other environmental
problems. Therefore, Sections 304(b) and 306 of the Clean Water Act (CWA) require EPA to
congder the non-water quaity environmental impacts and energy requirements of effluent limitations
guidelines and standards. Pursuant to these requirements, EPA has considered the effect of
promulgating the proposed BPT, BCT, BAT, NSPS, PSES and PSNS regulations for the Landfills
industry in regard to the creation of additional air pollution, solid and hazardous waste, and energy

consumption.

While it is difficult to balance environmental impacts across al media and energy use, the Agency
determined that the impacts identified below do not outwelgh the benefits associated with compliance

with the limitations and standards.

10.1  Air Pollution

The primary source of air pollution from landfillsis due to the microbia breakdown of organic wastes
from within the landfill. Landfills are known to be mgjor sources of greenhouse gas emissions such
as methane and carbon dioxide. These emissions are now regulated under the Clean Air Act (CAA)
as a result of the municipa solid waste landfill Standards of Performance for New Stationary
Sources and Guiddines for Control of Existing Sources, promulgated by the EPA on March 12, 1996
(Federal Register: Volume 61, Number 49) and codified in 40 CFR 60 Subpart CC-Emission
Guidelines and Compliance Timesfor Municipa Solid Waste Landfills and Subpart WWW-Standards
of Performance for Municipa Solid Waste Landfills. In accordance with these regulations, many non-

hazardous solid waste landfills are required to install systems to collect gases generated in the landfill.
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Wastewater collected from within the landfill contains organic compounds which include volatile
organic compounds and hazardous air pollutants. These wastewaters must be collected, treated, and
gtored in units which are often open to the atmosphere and will result in the volatilization of certain
compounds.  Organic pollutants volatilize in reaching an equilibrium with the vapor phase above the
wastewater. These volatile organic compounds are emitted to the ambient air surrounding the
collection and trestment units. The magnitude of volatile organic compound emissions is dependent
on factors such as the physical properties of the pollutants, the temperature of the wastewater, and
the design of theindividud collection and treatment units. The proposed regulations for the Landfills
industry were based on the use of an aerated biological system. Wastewater aeration may increase
the volatilization of certain organic compounds. However, theincreasein air emissions due to this
proposed regulation will be minima and will not sgnificantly increase the air emissions from landfills.
Chapter 6 of this development document, which discusses raw wastewater characterization, describes
the relatively small amount of volatile organic compounds currently found in untreated landfill
wastewaters (see Table 6-11).

In addition, EPA is addressing emissions of volatile organic compounds from industrial wastewater
through a Control Techniques Guideline (CTG) under Section 110 of the Clean Air Act. CAA
amendments require that State implementation plans for certain ozone nonattainment areas be revised
to require the implementation of reasonably available control technology (RACT) for control of
volatile organic compound emissions from sources for which EPA has prepared CTGs. In
September, 1992, EPA published a draft CTG document entitled “Control of Volatile Organic
Compound Emissions from Industrial Wastewater”. This document addresses various industries,
including the hazardous waste treatment, storage, and disposal facilities (TSDF) industry, and outlines
volatile organic compound emissions expected from their wastewater treatment systems and methods
for controlling them. For CTG guiddine purposes, EPA has included Subtitle C and D landfills with
leachate collection systems in the TSDF industry. EPA estimates that nearly all landfills affected by
the Landfills effluent guideline will be subject to this CTG for their volatile emissions from their
wastewater treatment systems. It was estimated in the CTG draft document that 43 percent of the
fecilitiesin the TSDF industry are located in areas of ozone nonattainment. In 1994, the draft CTGs
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were revised to reflect changes that were made in the wastewater provisions of the Hazardous
Organic Nationa Emission Standards for Hazardous Air Pollutants promulgated by the EPA on April
22,1994 (Federa Register: Volume 59, Number 19). EPA published these changes to the CTGs

in adocument entitled “Industrial Wastewater Alternative Control Technology”.

10.2 Solid and Other Aqueous Waste

Solid and other agueous waste would be generated by several of the wastewater treatment
technologies expected to be implemented to comply with the landfills regulation. The costs for the
disposa of these other waste residuals were included in the compliance cost estimates prepared for
the regulatory options. Solid wastes generated by a number of the proposed BPT, BCT, BAT, and
PSES wastewater treatment technologies include sudge from clarifiers associated with biological

treatment and chemical precipitation systems and backwash waters from filtration systems.

In surveying both subcategories of this industry, EPA determined that it is common practice to
dispose of the sludges generated by the on-site wastewater treatment systems directly back into the
landfills. This practice eliminates the need for, and the costs associated with, off-site disposal.
Analysis of sludge data collected as part of this study also indicates that sludges generated by
wastewater treatment systems at landfills in the Subtitle D Non-Hazardous subcategory are non-
hazardous, alowing them to be disposed of at the landfill sites from which they are generated.

Waste sludge generated by wastewater treatment facilities at landfills in the Subtitle C Hazardous
subcategory may or may not be a hazardous waste, depending upon factors such as the characteristics
of the waste deposited in the landfill and the design and operation of the wastewater treatment
system. If listed hazardous wastes as per 40 CFR 261 Subpart D are disposed of into the landfill, the
resultant dudges from the trestment of landfill generated wastewaters will be considered a hazardous
waste. Based upon the “derived-from” rule found in 40 CFR 261.3(c)(2), the ludge will have the
same RCRA waste code as the waste in the landfill for monofills. For hazardous waste landfills which
dispose of more than one type of listed hazardous waste and generate a multi-source leachate, the
dudge from treatment of the leachate will have the FO39 RCRA waste code. Sludges from atreated
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leachate a alandfill which handles only characteristic wastes as per 40 CFR 261 Subpart C will need
to be analyzed for to determine whether it exhibits any of the characteristics of a hazardous waste as
per 40 CFR 261 Subpart C. EPA has developed land disposal restrictions as found in 40 CFR 268.
This regulation places restrictions on the land disposal of wastes and specifies treatment standards
that must be met before wastes can be land disposed. For purposes of this regulation, EPA has
assumed that dried sludges from facilities in the Subtitle C Hazardous subcategory will be returned
to the on-gite landfill for disposal. Similarly, EPA has assumed dried dudges from Subtitle D non-
hazardous facilities will be returned to the on-site landfill for disposal. Listed or characteristically
hazardous waste sludges are to meet applicable treatment standards prior to disposal.

The increased amount of sludge created due to this regulation will be negligible in comparison with
the daily volumes of waste processed and disposed in atypical landfill, whether non-hazardous or
hazardous. As aresult, the practice of on-site disposal has a minima impact on landfill capacity.
For example, based on national estimates the Subtitle D Non-Hazardous subcategory processed
gpproximately 5,300 million tons of wastein 1992. The BPT/BCT/BAT/PSES wastewater treatment
options will generate approximately 0.0044 million tons per year of waste solids or only 8.3 x 10°
percent of the volume of waste disposed into the landfill. For the Subtitle C Hazardous subcategory,
the BPT/BCT/BAT/PSES option will generate approximately 194 tons per year of solids as compared
to the national estimate of 550 million tons of waste processed, which equates to 3.5 x 10° percent.

Filtration backwash waters are generally recycled to the beginning of the wastewater treatment
system for reprocessing. This practice eliminates the generation of a waste stream needing disposal.

10.3 Energy Requirements

The operation of wastewater treatment equipment results in the consumption of energy. EPA
estimates that the attainment of the proposed BPT, BCT, BAT, or PSES standards will increase
energy consumption by avery small increment over present industry use. The treatment technologies
that are the basis for the proposed limitations and standards are not energy-intensive, and the

projected increase in energy consumption is primarily due to the incorporation of components such
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as power pumps, mixers, blowers, power lighting and controls, and heating devices. The costs
associated with these energy costs are included in EPA's estimated operating costs for compliance
with the proposed guideline presented in Chapter 9. For example, the BPT/BCT/BAT Option 2 for
the Subtitle D Non-Hazardous subcategory is estimated to consume 3,300 megawatt-hour per year
(Mwhr/year). Thisisequivaent to approximately 1,800 barrels per year of No.2 fuel oil, as compared
to the 1992 rate of consumption in the United States of 40.6 million barrels per year. The additional
energy demand imposed by this regulatory option will represent an insignificant increase in the
production or importation of fuel oil. For the Subtitle C Hazardous subcategory, the proposed
regulatory option is estimated to consume 37.3 Mwhr/yr or an equivalent 21 barrels per year of No.2
fuel oil.
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